PRODUCT LINE BROCHURE

A MITSUBISHI CHEMICAL CORPORATION

DIAION

Mitsubishi Chemical Corporation has been manufacturing our DIAIONTM brand of ion exchange resin and SEPABEADSTM of synthetic adsorbent for over 70 years. Our DIAIONTM and SEPABEADSTM brand names are known throughout the world for excellent performance, superior physical and chemical properties and Lot-to-Lot reproducibility for industrial separations. Mitsubishi Chemical currently offers over 300 unique compositions of separation media for wide variety of applications. We are pleased to present this compilation of our standard commercial products. We encourage you to contact our world wide offices to discuss your applications.

CONTENTS

Strongly Acidic Cation Exchange Resins

DIAION™ SK Series (Gel Type)	1
DIAION™ PK Series (Porous Type)	2
DIAION™ RCP160M (Highly Porous Type) • • • • • • • • • • • • • • • • • • •	2

Strongly Basic Anion Exchange Resins

DIAION™ SA10A Series (Type I) , SA20A Series (Type II) (Gel Type) ••••••	3
DIAION™ PA300 Series (Type I) (Porous Type)	4
DIAION™ HPA25L (Type I) (Highly Porous Type) · · · · · · · · · · · · · · · · · · ·	4
DIAION™ PA400 Series (Type II) (Porous Type) · · · · · · · · · · · · · · · · · · ·	5

Weakly Acidic Cation Exchange Resins

DIAION™ WK10 Series (Methacrylic Type) • • • • • • • • • • • • • • • • • • •	• 6
DIAION™ WK40L (Acrylic Type)	• 6

Weakly Basic Anion Exchange Resins

DIA	N™ WA10 (Acrylic Type)	7
DIA	N™ WA20, WA21J (Polyamine Type)	7
DIA	N™ WA30 (Dimethylamine Type)	7

Gel type Uniform Particle Size Ion Exchange Resins

DIAION™ UBK Series (Gel Type)	• • • • • • • • • • • • • • • • • • • •	8
DIAION™ UBA Series (Gel Type)		9

Cation Exchange Resins for Industrial Chromatography

DIAION™ UBK500 Series (Gel Type) • • • • • • • • • • • • • • • • • • •)
---------------------------------	---	---

Low-odor and Low-elution Anion Exchange Resins

DIAION™ SAF11AL, SAF12A (Gel Type) 11	
DIAION™ PAF308L (Porous Type)	
DIAION™ WA30C (Highly Porous Type) · · · · · · · · · 11	

Chelating Resins

DIAION™ CR11 (Iminodiacetate Type) · · · · · · · · · · · · · · · · · · ·	
DIAION™ CR20 (Polyamine Type) - 12	
DIAION™ CRB03, CRB05 (Glucamine Type) 12	

Synthetic Adsorbents

DIAION™ HP20, HP21 (Aromatic Type) 12	3
SEPABEADS™ SP825L, SP850 (Aromatic Type)	3
SEPABEADS™ SP70 (Aromatic Type) 14	4
SEPABEADS™ SP207 (Modified Aromatic Type) 14	4
DIAION™ HP2MGL (Methacrylic Type) 14	4

Synthetic Resins of Small Particle Size for Chromatographical Separation

	DIAION™ HP20SS, SEPABEADS™ SP20SS (Aromatic Type)	15
	SEPABEADS™ SP207SS (Modified Aromatic Type) · · · · · · · · · · · · · · · · · · ·	15
Rem	narks in handling Ion Exchange Resins	16
Prep	paration before Use	16

DIAION™

These are the resins of cross linked polystyrene matrix having sulfonic acid groups. There are SK-grade of gel type, PK-grade of porous type and RCP160M of highly porous type. The standard shipping form is sodium salt (in some cases hydrogen form is available).

Gel Type

DIAION[™] SK Series

SK1B resin is our "flagship" premium grade, gel-type, strong acid cation resin. It has excellent properties for industrial applications and is recommended for industrial scale softening and demineralization applications. It has standard crosslinkage. In situations where the raw water contains oxidizing substances, the higher crosslinkage resins such as SK110 and SK112 are recommended to provide better performance and longer operating life. SK110 is also recommended for regenerable mixed bed applications.

SK104H has low (4%) crosslinkage. It is mainly used as a catalyst and special applications where low crosslinked density is necessary to allow penetration of large organic molecules, or where a faster reaction rate is required.

Grade Name	DIAION™ SK104H	DIAION™ SK1B	DIAION™ SK110	DIAION™ SK112		
Chemical Structure	-CH2 -CH -	-CH2 -CH - SO3 - Na+				
Ionic Form As Shipped	H-form	Na-form *				
Whole Bead Count		90 min.				
Shipping Density (g/ℓ-R; approx.)	750	830	855			
Salt Splitting Capacity (meq/mℓ-R)	1.1 min.	2.0 min.	2.0 min.	2.1 min.		
Water Content(%)	62-72	43-50 35-45 32-42				
Particle Size **	on 1,180µm 5 % max. through 300µm 1 % max.					
Effective Size (mm)	0.40 min.					
Uniformity Coefficient	1.6 max.					
Ionic Form Conversion H Form (eq %)	95 min.	nin. —				
Operating Temperature (°C)		120 (H-form, Na-form) max.				
Crosslinkage (%)	ca. 4	ca. 8 ca. 10 ca. 12				

* Please contact us when regenerated (H $^{+}$ form) is required.

Strongly Acidic Cation Exchange Resins

Porous Type

DIAION[™] PK Series

The PK resin grades are based on a porous styrene DVB polymer matrix. Their porous structure provides excellent durability against osmotic shock by swelling and shrinkage. PK216 is recommended for general water treament. PK228 is recommended for condensate demineralization (L grade is recommended for best pressure flow performance). PK grades are also recommended for special applications such as deashing, decolorization, and as a catalyst (as they have higher reaction rate in organic solvents than gel-type resins).

Highly Porous Type D

DIAION[™] RCP160M

RCP160M has higher porous properties than PK series, and has a measurable surface area. It is generally used for special process applications such as non-aqueuos catalic reaction or cation removal from non-porlar solvent.

Grade Name	DIAION [™] PK208	DIAION™ PK212L	DIAION™ PK216	DIAION [™] PK220	DIAION™ PK228	DIAION™ RCP160M
Chemical Structure	-CH2-CH - SO3 - Na -					-CH ₂ -CH -
Ionic Form As Shipped			Na-form *			H-form
Whole Bead Count			95 ı	min.		
Shipping Density (g/ℓ-R; approx.)	765	765 780 785 795 810				745
Salt Splitting Capacity (meq/mℓ-R)	1.2 min.	1.5 min.	1.75 min.	1.9 min.	2.05 min.	1.5 min.
Water Content(%)	58–68	52–58	46–52	41–47	37–43	45–55
Particle Size ** on 1,180µm through 425µm through 300µm	5 % max. 1 % max.	% max. 5 % max. 5 % max. — 1 % max. — % max. — 1 % max.				on 710µm 25 % max
Effective Size (mm)	0.40 min.	0.45 min.		0.40 min.		_
Uniformity Coefficient	1.6 max.				-	
Ionic Form Conversion H Form (eq %)	_				97 min	
Operating Temperature (°C)	120 (H form, Na form) max.					
Crosslinkage (%)	ca. 4	ca. 6	ca. 8	<i>ca.</i> 10	<i>ca.</i> 14	-

* Please contact us when regenerated (H⁺ form) is required.

DIAION[™] strong base anion exchange resins are based on crosslinked polystyrene matrix having quaternary ammonium groups (NR3+). Among DIAION[™] product line, there are SA-grades of gel-type. PA-grades of porous-type, and HPA-grades of highly porous-type. The standard shipping form is CI- form. (in some cases OH- form is available).

Type I resins have trimethyl ammonium groups which impart higher basicity. In the co-current regeneration mode, the treated water will have the lowest silica leakage.

Type I resins also have higher chemical stability, and can be applied at higher temparature (than Type II or acrylic based resins.)

Type II resins have dimethylethanolamine groups which impart slightly lower basicity. This provides an advantage of easier regeneration (than Type I) and slightly higher capacity.

Gel Type DIAION [™] SA10 Series (Type I) and SA20 Series (Type II)	
---	--

SA10A is a Type I resin with standard crosslinkage. SA12A is also a Type I resin with slightly lower crosslinkage. These resins are popularly used for water treament. SA12A is typically recommended for treatment of surface waters with troublesome organic content.

SA11A is Type I resin with low crosslinkage, and is mainly used for special applications such as sometimes used as a mixed bed or primary bed polisher anion.

NSA100 is gel polymer, Type I resin of high crosslinkage. It is used for special applications such as iodine isolation from brine.

SA20A is Type II resin of standard crosslinkage. It is popularly used for water treatment with its easy.

Grade Name	DIAION™DIAION™DIAION™DIAION™SA10ASA11ASA12ANSA100		DIAION™ SA20A		
Туре		Туре	Ι		Type II
Chemical Structure		CH ₂ – CH –	$-CH_2-CH - \\ CH_3 \\ CH_2N^+ CH_3 C \ell^- \\ C_2H_4OH$		
Ionic Form As Shipped *	Cℓ-form				
Whole Bead Count	90 min.				
Shipping Density (g/ℓ-R; approx.)	670	670 685 670 685		715	
Salt Splitting Capacity (meq/ml-R)	1.3 min.	1.3 min. 0.85 min. 1.3 min. 1.3 min.		1.3 min.	
Water Content (%)	43–47	55-65	48–55	37-41.5	45–52
Particle Size ** on 1,180µm through 300µm	5 % max. 1 % max.				
Effective Size (mm)	0.40 min.				
Uniformity Coefficient	1.6 max.				
Operating Temperature (°C)		60 (OH-fo 80 (Cℓ-fo	orm) max. rm) max.		40 (OH-form) max. 60 (Cℓ-form) max.

* Please contact us when regenerated (OH⁻form) is required.

Strongly Basic Anion Exchange Resins

Porous-Type

DIAION[™] PA300 Series (Type I)

Porous-type ion exchange resins of porous polymer matrix have good resistance against swelling and shrinking, though their exchange capacity is lower than gel-type ion exchange resins of the same degree of crosslinkage.

These are effective when highly purified effluents are needed, e.g. removal of silica to very low concentration.

They are suitable for treatments of waste waters with organic compounds.

PA312 and PA316 are generally used in waste water treatments, and PA308 is used for demineralization and decolorization of sugar liquors.

Highly Porous-Type DIAION[™] HPA25L (Type I)

Highly porous type resin, HPA25L, has higher crosslinkage and higher porous properties than standard PA grade resins. This is typically used for treatment of large molecules in special process applications. They are mainly applied in enzyme purification as enzyme carriers for treatment of bio-pharmaceutical substances, and treatment of feed solutions of high color value.

Grade Name	DIAION [™] PA308	DIAION™ PA312	DIAION [™] PA316	DIAION™ HPA25L	
Туре		Туре	Ι		
Chemical Structure	$-CH_{2} - CH - CH_{3}$ CH_{3} $CH_{2}N^{+} CH_{3} C\ell^{-}$ CH_{3}				
Ionic Form As Shipped *		Cl-form			
Whole Bead Count	95 min.				
Shipping Density (g/ℓ-R; approx.)	710	675	670	675	
Salt Splitting Capacity (meq/mℓ-R)	1.0 min.	0.5 min.			
Water Content (%)	57-67	58–68			
Particle Size **	on 1,180µm 5 % max. on 300µm through 300µm 1 % max. 5 % min.				
Effective Size (mm)	0.40 min. 0.25 min.				
Uniformity Coefficient		1.6 n	nax.		
Operating Temperature (°C)	60 (OH-form) max. 80 (Cℓ-form) max.				
Crosslinkage (%)	ca. 4	ca. 6	ca. 8	-	

* Please contact us when regenerated (OH⁻form) is required.

DIAION[™]

Strongly Basic Anion Exchange Resins

Porous Type

DIAION[™] PA400 Series (Type II)

Type II has better efficiency to be regenerated though it has lower basicity and chemical stability than Type I. PA418 is generally used in water treatment. PA408 is used to demineralize and to decolorize sugar liquors.

Grade Name	DIAION™ PA408	DIAION™ PA412	DIAION™ PA418			
Туре	Туре II					
Chemical Structure	$-CH_{2} - CH - CH_{3}$ $-CH_{3} + CH_{3} + CH_$					
Ionic Form As Shipped *		Cℓ-form				
Whole Bead Count	95 min.					
Shipping Density $(g/l - R)$	720	685				
Salt Splitting Capacity (meq/mℓ−R)	0.9 min.	1.1 min.	1.3 min.			
Water Content (%)	54-64	38–44				
Particle Size * * on 1,180µm through 300µm	5 % max. 1 % max.					
Effective Size (mm)	0.40 min.					
Uniformity Coefficient		1.6 max.				
Operating Temperature (°C)	40 (OH form) max. 60 (Cℓ form) max.					
Crosslinkage (%)	ca. 4	<i>ca.</i> 6	са. 9			

* Please contact us when regenerated (OH⁻form) is required.

Methacrylic Type

DIAION[™] WK10 Series

WK10 grades (methacrylic-type) are weak acid cation exchange resins having carboxylic acid functionalities. They have a pK value of approximately 6. WK10 has high reaction rate, and WK11 has a high total exchange capacity. These grades are mainly used for special applications such as purification of pharmaceuticals, foods and organic chemicals.

WT01S has high reaction rate and high adsorption capacity. It is mainly used for the purification of pharmaceuticals and foods. WT01S is offered in 100-300 µm particle distribution.

Acrylic Type

DIAION[™] WK40L

WK40L is weak acid cation exchange resin with carboxylic acid functionality based on porous acrylic polymer matrix. It has a pK value of approximately 5.3. The acrylic type WK40L resin has a higher total capacity than methacrylic type resins. It is mainly used for water treament applications for removal of hardness ions in the presence of bicarbonate alkalinity.

Grade Name	DIAION™ WK10	DIAION™ WK11	DIAION™ WT01S	DIAION™ WK40L
Chemical Structure		—СН₂-СН— соон		
Whole Bead Count	95 min.			
Shipping Density (g/ℓ-R; approx.)	635	660	750	765
Total Capacity (meq/mℓ-R)	2.5 min.	2.9 min.	3.0 min.	4.4 min.
Water Content (%)	53–59 45–52 45–55		45–55	41-48
Particle Size on 1,180µm through 300µm	5 % max. (300–106μm 1 % max. 85 % min.)			10 % max. through 425µm 3 % max.
Effective Size (mm)	0.40 min. 0.10–0.14			0.45 min.
Uniformity Coefficient	1.6 max.			
Effective pH Range		4–14		
Operating Temperature (℃)		150 max.		120 max.

DIAION[™]

Weakly Basic Anion Exchange Resins

Acrylic Type

DIAION[™] WA10

WA10 resin is based on gel-type polymer matrix. It has tertiary amine functionality with high regeneration efficiency. The acrylic polymer matrix provides good chemical stability and good resistance to organic fouling. WA10 is mainly used for pretreatment of starch hydrolysates (such as corn syrup) containing purification of dextrose, beet sugar solutions, and formaldehyde.

Polyamine Type

DIAION[™] WA20, WA21J

WA20 and WA21J do not have any neutral salt splitting capacity. They have high total exchange capacity and high regeneration efficiency. The porous styrene polymer imports high chemical stability, high mechanical strength against attrition loss, high thermal stability and high durability against organic fouling.

These resins are used for the removal of strong mineral acids in standard water treatment applications. They can also be applied in special process separations such as the treatment of organic solvents.

It should be noted that WA21J has a high porous structure and provides excellent mechanical strength for more rigorous industrial applications.

Dimethylamine Type D

DIAION[™] WA30

WA30 resin is a weak base anion exchange resin based on high porous, styrene/ DVB polymer matrix. WA30 has tertiary amine functionality with high regeneration efficiency. The high porous styrenic matrix imparts excellent chemical stability, excellent mechanical and osmotic strength (to minimize attrition), high thermal stability and excellent durability against organic fouling. The high porous matrix of WA30 provides a high reaction rate.

WA30 is the bench mark which all macroporous weak base anion exchange resins are compared with. WA30 is used for very wide variety of applications, such as removal of organic substances of high molecular weight, pretreatment of raw waters containing organic foulants, deionization and decolorization of starch hydrolysates (such as corn syrup, dextrose, HFC's and sugar solutions) and purification of glycerine and enzymes.

Grade Name	DIAION™ WA10	DIAION™ WA20	DIAION™ WA21J	DIAION™ WA30
Chemical Structure	—СН2 — СН — СОNH(СН2)nN _CH3 _CH3		NH(CH2CH2NH)nH	-CH ₂ -CH - CH ₂ CH ₃ CH ₃
Whole Bead Count	90 min.	95 min.	95 min.	95 min.
Shipping Density (g/ ℓ -R; approx.)	695	660	655	635
Total Exchange Capacity (meq/mℓ-R)	1.2 min.	2.5 min.	2.0 min.	1.5 min.
Water Content (%)	63–69	39–45	40-52	43–55
Particle Size on 1,180µm through 300µm	5 % max. 1 % max.			
Effective Size (mm)	0.35 min. 0.40 min.			
Uniformity Coefficient	1.6 max.			
Effective pH Range	0 – 9			
Operating Temperature ($^{\circ}$)	60 max.		100 max.	

Gel Type Uniform Particle Size Ion Exchange Resins

Gel Type

DIAION[™] UBK Series

Ion exchange resins with good uniformity in particle size increase their necessity to reduce the reagents costs and spent waste waters in manufacturing pure waters. They are also used in other fields because they have little amount of large particles easy to be broken by swelling and shrinkage. Gel type ion exchange resins of uniform particle size are now launched to meet such necessity.

UBK16 has high (16%) crosslinkage. It is used for special process applications such as purification of pharmaceuticals.

Grade	Strongly Acidic Cation Exchange Resin					
Grade Name	DIAION™DIAION™DIAION™DIAION™UBK08UBK10UBK12UBK16					
Chemical Structure	$-CH_2 - CH - $ \downarrow $SO_3 - Na^+$					
Ionic Form As Shipped		Na-	form			
Whole Bead Count		90	min.			
Shipping Density (g/ ℓ -R; approx.)	840	850	855	865		
Salt Splitting Capacity (meq/m ℓ -R)	2.0 min.	2.2 min.	2.3 min.	2.3 min.		
Water Content (%)	43–49	43-49 38-44 33-39 27-37				
Average Diameter (µm)	600 ± 50	650	± 50	600 ± 50		
Uniformity Coefficient	1.10	max.	1.2	max.		
Operating Temperature (℃)		120 (H-form,	Na-form) max.			
Crosslinkage (%)	ca. 8	<i>ca.</i> 10	ca. 12	<i>ca.</i> 16		

DIAION[™] Gel Type Uniform Particle Size Ion Exchange Resins

Gel Type

DIAION[™] UBA Series

Ion exchange resins with good uniformity in particle size increase their necessity to reduce the reagents costs and spent waste waters in manufacturing pure waters. They are also used in other fields because they have little amount of large particles easy to be broken by swelling and shrinkage. Gel type ion exchange resins of uniform particle size are now launched to meet such necessity.

	Strongly Basic Anion Exchange Resin					
Grade	Туре	Type II				
Grade Name	DIAION™ UBA100	DIAION™ UBA200				
Chemical Structure	-CH ₂ -CH	-CH2 -CH - CH3 CH3 CH2N ⁺ CH3 Cℓ ⁻ C2H4OH				
Ionic Form As Shipped	C ℓ -form					
Whole Bead Count	90 min. 95 min.		90 min.			
Shipping Density (g/ ℓ -R; approx.)	680 675		715			
Salt Splitting Capacity (meq/mℓ-R)	1.35 min.	1.3	min.			
Water Content (%)	43–49	49–55	45–51			
Average Diameter (µm)	550 ± 50 575 ± 50		575 ± 50			
Uniformity Coefficient	1.10 max.					
Volume Change (H-form/Na-form, OH-form/Cℓ-form)	1.	1.12				
True Specific Gravity	1.	1.12				
Operating Temperature ($^{\circ}$ C)	60 max. (80 max. (OH-form) Cℓ-form)	40 max. (OH-form) 60 max. (C ℓ -form)			

Cation Exchange Resins for Industrial Chromatography

Gel Type

DIAION[™] UBK500 Series

Chromatographical separation is widely industrialized in pharmaceuticals, fermentation and food fields. Ion exchange resins of small particles with uniform particle size distribution are applied for these purposes. The smaller particles with the more uniform particle size distribution, the higher yields and purities can be obtained.

DIAION[™] UBK500 series are typical cation exchange resins of this type.

Grade Name	DIAION™ UBK530	DIAION™ UBK550	DIAION™ UBK535	DIAION™ UBK555	
Chemical Structure	-CH2 -CH - , SO3 - Na+		$-CH_{2}-CH -$ $SO_{3}^{-} \frac{1}{2}Ca^{2+}$		
Ionic Form As Shipped	Na-form		Ca-form		
Whole Bead Count		95 r	nin.		
Shipping Density (g/ ℓ -R; approx.)	825	850	840	865	
Salt Splitting Capacity (meq/ml-R)	1.6 min.	1.9 min.	1.6 min.	2.0 min.	
Water Content (%)	52.0-55.5	46.0-49.5	47–51	42-46	
Partiala Siza	200–240 μm		190–	240 µm	
r al licle Size	85%	min.	90% min.	85% min.	
Ionic Form Conversion Ca Form (eq%)	_		98 min.		
Operating Temperature (°C)	120 max.				

DIAIONTM Low-odor and Low-leachable Anion Exchange Resins

Gel Type	DIAION [™] SAF11AL, SAF12A
Porous Type	DIAION [™] PAF308L
Highly Porous Type	DIAION [™] WA30C

Low-odor and low-leachable anion exchange resins, with suppressed leachable of TOC and amines, are applied for manufacturing of drinking water and refining of sugar liquors.

Grade Name	DIAION [™] SAF11AL	DIAION™ SAF12A	DIAION [™] PAF308L	DIAION™ WA30C
Chemical Structure	—CH2	-CH ₂ -CH - CH ₂ CH ₂ N CH ₃		
Ionic Form As Shipped		Cℓ-form		free base
Whole Bead Count	90 min.	—	95 min.	95 min.
Shipping Density (g/ ℓ -R; approx.)	700	675	705	650
Salt Splitting Capacity (meq/mℓ−R)	0.85 min.	1.2 min.	0.9 min.	_
Total Exchange Capacity (meq/ml—R)	_	_	_	1.5 min.
Water Content (%)	59-64	48-55	62-72	43-55
Particle Size on 1,180µm through 425µm through 300µm	5 % max. 5 % max. —	5 % max. — 1 % max.	5 % max. 5 % max. —	5 % max. — 1 % max.
Effective Size (mm)	0.45 min.	0.40 min.	0.45 min.	0.40 min.
Uniformity Coefficient	1.6 max.			
TMA washing property (ppb) COD (ppm)		— 5 max.		
True specific gravity	1.07	1.07	1.06	1.04
Operating Temperature (°C)		60 max. (OH-form) 80 max. (C ℓ -form)		100
Use	Purification of sugar liquor	Beverage water, Ultra pure water primary system	Purification of sugar liquor	Beverage water, Ultra pure water primary system

Iminodiacetate Type

DIAION[™] CR11

CR11 is based on a high porous styrenic matrix, and provides rapid kinetics, high operating capacity, low swell/ shrink ratio, and excellent mechanical stability. CR11 captures metal ions by chelation with its iminodiacetate functionality. CR11 has a much higher selectivity (than strongly and weakly acidic cation exchange resins) for divalent ions, especially transition metal elements like copper, iron, etc. CR11 can capture metal ions at much lower pH than strong and weak acid resins. As CR11 has higher selectivity for divalent metal ions than monovalents; it can be used for separation of divalent from monovalent ions.

Polyamine Type

DIAION[™] CR20

CR20 is a special chelating resin with polyamine functionality. CR20 captures metal ions by chelation with its polyamine functionality within its high porous styrene/ DVB matrix. CR20 has a high selectivity to heavy metal ions. It does not absorb alkali metal and alkali earth metal ions, and therefore, it ca be used for heavy metal recovery form alkali metal or alkali earth metal ion solution.

Glucamine Type

DIAION[™] CRB03, CRB05

CRB03 and CRB05 are special chelating resin with glucamine groups based on a high porous styrene/DVB matrix. It has high selectivity to borate ion. It is used for borate separation from various solutions, including brines and sea water.

Grade Name	DIAION™ CR11	DIAION™ CR20	DIAION™ CRB03	DIAION™ CRB05	
Chemical Structure	$\begin{array}{c c} -CH_2 - CH - \\ \hline \\ CH_2 COON_a \\ CH_2 N \\ CH_2 COON_a \end{array} \qquad \begin{array}{c c} -CH_2 - CH - \\ \hline \\ CH_2 N \\ CH_2 COON_a \end{array}$		- CH ₂ - CH - CH ₂ NCH ₂ (C H ₂ NCH ₂ (C CH ₃	CH)₄CH₂OH │ OH	
Whole Bead Count		95 min.			
Shipping Density (g/ ℓ -R; approx.)	730	635	665	770	
Total Exchange Capacity (meq/mℓ−R)	_	_	0.7 min.	0.95 min.	
Cu Adsorption Capacity (m-moℓ/mℓ−R)	0.5 min.	0.4 min.	_	_	
Water Content (%)	55–65	50-60	45–55	43–53	
Particle Size on 1,180µm on 850µm through 355µm through 300µm	5 % max. — 2 % max. —	5 % max. — — 1 % max.	 1 % max.	— 10 % max. — 1 % max.	
Effective Size (mm)	0.40	0.35-0.55	0.35 min.		
Uniformity Coefficient		1.6 max.		·	
Operating Temperature (°C)	80 max. (H-form) 120 max. (Na-form) 100 max. (Free form) 100 max. (Free form)				

DIAION[™]

Aromatic Type

DIAION[™] HP20, HP21

Widely used in refining of pharmaceuticals and natural extracts, since these are suitable for adsorbing large molecules because of their relatively large pore sizes and have superior adsorption/ desorption. HP20 and HP21 are widely used in a variety of industrial applications, especially adsorption, desalting and decolorization of natural products and small proteins.

Aromatic Type

SEPABEADS[™] SP825L, SP850

SP825L and SP850 are also high porous, styrenic adsorbents. They have much larger surface area and a narrower, more uniform pore-size distribution than HP20 grades. They offer nearly two times the surface area of HP20, or twice the capacity for small molecules (< 1500mw). These grades are recommended for adsorption, desalting, and decolorizaion.

Grade Name	DIAION™ HP20	DIAION™ HP21	SEPABEADS™ SP825L	SEPABEADS™ SP850	
Chemical Structure	$-CH_{2}-CH-CH_{2}-CH-$				
Shipping Density (g/ ℓ -R; approx.)	680	685	685	695	
Water Content (%)	55-65	50-60	52–62	46–52	
Particle Size on 250µm	90 % min.		95 % min.	90 % min.	
Effective Size (mm)	0.25 min.				
Uniformity Coefficient	1.6 max.				
Example of Porosity					
Pore Volume (ml/g)	1.3	1.3	1.4	1.1	
Specific Surface Area (m²/g)	590	640	930	930	
Pore Radius (Á)	290	110	70	45	
Operating Temperature (°C)	130 max.				

Synthetic Adsorbents

Aromatic Type

SEPABEADS[™] SP70

SP70 is aromatic adsorbent which has moderate micro pore sizes. It can be adapted to the US FDA standard, CFR §173.65.

Modified Aromatic Type SEPABEADS[™] SP207

SP207 has higher hydrophobicity and greater selectivity for non-polar molecules, which is derived from chemically bonded bromine to the aromatic rings, than standard aromatic adsorbents. It is suitable for upward flow and batch processes due to its high specific gravity, 1.2 times higher than.

HP2MGL is a high porous, methacrylate based adsorption resin. It is synthesized only from methacrylates (monomer and crosslinker are methacrylate). It does not contain any aromatic compounds. It is considered an intermediate polarity adsorption resin. It is suitable for desalting and adsorption of organic compounds of relatively high polarity by using the more hydrophilic characteristics of the polymer matrix.

Grade Name	SEPABEADS™ SP70	SEPABEADS™ SP207	DIAION™ HP2MGL		
Chemical Structure	$-CH_2 - CH - CH_2 - CH -$ $-CH_2 - CH - CH_2 - CH -$ $-CH_2 - CH - CH_2 - CH_3$	$-CH_2-CH-CH_2-CH-$	$\begin{array}{ccc} CH_3 & CH_3 \\ -CH_2 - C - CH_2 - C - \\ & \\ CO & COOCH_3 \\ \\ O \\ \\ CH_2 \rangle_2 \\ \\ O \\ CO \\ - CH_2 - C - \\ \\ CH_3 \end{array}$		
Shipping Density (g/ ℓ -R; approx.)	685	790	720		
Water Content (%)	57–67	43–53	55–65		
Particle Size	on 250µm 95% min.	on 250µm 90% min.	through 355µm 1% max.		
Effective Size (mm)	0.25	0.40 min.			
Uniformity Coefficient	1.6 max.				
Example of Porosity					
Pore Volume (ml/g)	1.5	1.0	1.3		
Specific Surface Area (m²/g) Pore Badius (Å)	870 70	600 110	570 240		
			270		
Operating Temperature (°C)	130				

DIAION™

Synthetic Resins of Small Particle Size for Chromatographical Separation

It is well known that smaller size resins are required to obtain higher purity and better recovery in chromatographic separation of pharmaceuticals. Mitsubishi Chemical offers several types of synthetic adsorbent grades in very useful particle size distributions for industrial scale chromatography. Mitsubishi chemical also offers analytical HPLC packing media MCI GEL[™] which has same chemical and physical structure as these grades. Industrial scaling up of separation process is easily attained by using our product line up.

Aromatic Type

DIAION[™] HP20SS, SEPABEADS[™] SP20SS

HP20SS and SP20SS are directly polymerized, small particle size version of HP20. The wide pore polymer matrix provides excellent kinetics and capacity for small biomolecules at both preparative and process scale. They offer nice balance of pressure flow characteristics and true chromatographic fractionation and have also been successfully applied in simulated moving bed (SMB) applications for a variety of small biomolecules. They often compete with bonded silica supports for preparative and industrial applications.

Modified Aromatic Type

SEPABEADS[™] SP207SS

SP207SS is a small size version of modified aromatic type SEPABEADS[™] SP207. It is applied to reversed phase chromatography. The brominated polymeric matrix provides unique selectivity, full pH operating range and long operating life versus conventional bonded silica packing materials used in preparative and industrial applications.

Grade Name	DIAION™ HP20SS	SEPABEADS [™] SP20SS	SEPABEADS [™] SP207SS
Chemical Structure		-CH ₂ -CH -	
Shipping Density (g/ ℓ -R; approx.)	670	660	780
Water Content (%)	55–67	55–65	43–53
Particle Size	on 150µm 15% max. 63-150µm 70% min. through 63µm 20% max.	on 75 µ m 30% max. 63-75 µ m 55% min. through 63µm 15% max.	on 150µm 15% max. 63-150µm 70% min. through 63µm 20% max.
Example of Porosity			
Pore Volume (ml/g)	1.	1.0	
Pore Radius (Å)	29	110	
Operating Temperature (°C)	130	130 max.	

Remarks in handling Ion Exchange Resins

Handling

Wear suitable personal protective equipments to prevent exposure to eyes and skin, and handle ion exchange resins at well-ventilated places from the windward. Eye-washing facilities should be set nearby. When contacted with eyes, rinse eyes with much water and consult a doctor. When swallowed, wash stomach immediately with much water and consult a doctor depending on symptoms. Spilt ion exchange resins should be collected and the floors should be cleaned, lest they may cause some slips. Separate from high temperature machinery and materials, fireworks, flames and avoid contacts and/or mixing with oxidizing materials.

Sufficient care must be taken not to contact with oxidizing agents, e.g. nitric acid, since ion exchange resins may explode when contacted with them.

Storage

Store in cool, dry, well-ventilated and dark places. Close tightly to prevent contamination and solvent vaporization. Separate from oxidizing materials.

lon exchange resins deteriorate fast at high temperatures and containing water may freeze and break ion exchange resins under 0 $^\circ\!C.$

Disposal

Disposal of unused ion exchange resins should be done by reclamation and/or incineration according to the instructions at the notice of handling and storage. Incineration should be implemented by incinerators that have proper facilities to treat SOx, NOx, CO and other gases. The used ion exchange resins that adsorb heavy metals must be disposed subject to the direction of the Wastes Disposal and Public Cleaning Law.

Preparation before Use

After filling brand new ion exchange resins into towers, backwashing and conditionings are recommended in order to eliminate the remaining elution impurities.

The backwashing and conditioning conditions vary depending on the designs and the reagents that can be applied.

There are two ways in conditioning; one is reciprocal washings with dilute acid water, e.g. 2N-HCl, and with dilute alkali water, e.g. 1N-NaOH, and the other is reciprocal flows of regenerating reagents and rinse water. The conditioning method and the number of such repetition are decided on the required quality of the treated water and other factors. The number of the repletion is, in general, recommended to be high to minimize the elution when such elution has a large influence.

Consult the designer/engineer of your packed columns before the actual operations.

Please contact us about ultrapure water or beverage water applications. We can provide with special preparations for such purposes.

Please contact us when you require the other ion exchange resins and synthetic adsorbents not specified in this catalog. Some could be prepared on your requests.

The contents in this catalog might be changed without previous notice.

A MITSUBISHI CHEMICAL CORPORATION

Mitsubishi Chemical Corporation Separation Materials Department 1-11-2, Osaki, Shinagawa-ku, Tokyo, 141-0032, Japan Phone: +81-3-6748-7146 Fax: +81-3-5487-6810 http://www.diaion.com

Resindion S.R.L. Via Roma 55, 20082 Binasco(MI), Italy Phone: +39-02-900-130223 Fax: +39-02-90090774 E-mail : info@resindion.com http://www.resindion.com

Tai-Young Chemical Co, Ltd. 42, Hwa-Chon Road, Ta-Liau Li, Ta-Liau District, Kaohsiung City, Taiwan 831 Phone: +886-7-7871295 Fax: +886-7-7871052 E-mail : service@diaion.com.tw

Mitsubishi Chemical (China) Co., Ltd 39nd Floor, Grand Gateway Office Tower 1, 1 Hongqiao Rd., Xuhui District, Shanghai, 200030 China Phone: +86-(0)21-5407-6161

Mitsubishi Chemical India Pvt. Ltd. Soulstice, Plot No-52, 1st Floor Sector-44, Gurgaon-122003,Haryana, India Phone: +91-(0)124-4699800 Fax: +91-(0)124-4699822 http://www.mc-india.co.in

Mitsubishi Chemical Asia Pacific Pte Ltd. 60 Anson Road, #10-01 Mapletree Anson, Singapore 079914 Phone: +65-6226-3707

DIAION[™]